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Hierarchical structure in the chaotic scattering off a 
magnetic dipole 

B Riickerl and C Jung 
Fachtereich Physik, Universit2t Bmmen, 28359 Bremen, G e m y  

Received 6 July 1994 

Abstract. We use the scanering off a magnetic dipole as an example of how a useful himhical 
order can be found m the set of singularities of an appropriate scaering function. This function 
is an unusual rype of time delay function. Knowledge of the himhical d e r  can be used to 
construct a symbolic description of the dynamics. Here it is useful to have a nnmber of symbol 
values which are larger than the number of basic periodic orbits of period one, 

1. Introduction 

The best way to give a complete overview of the global behaviour of a chaotic system is to 
construct a symbolic dynamics. This will contain, in a very compact way, the qualitative 
structure of the set of all lrajectories. (For some general ideas on symbolic dynamics and 
some applications of them on open systems see [ 1-71,) Unfortunately, for most systems there 
is no chance to constmct an exact symbolic dynamics with a finite number of grammatical 
rules. However, it is helpful to have at least some approximate symbolic description which 
properly captures the dynamics over time intervals in some finite range. The purpose of this 
paper is to present some steps towards this goal for the case of chaotic scattering systems. 
We demonstrate our ideas with the aid of the scattering of an electrically charged particle 
off a magnetic dipole, the so-called Sttimer problem [8]. It has been shown numerically 
that this system contains topological chaos in its bound trajectories [9-111 as well as in 
its scattering behaviour [12]. For this system, there is even analytical proof that it is not 
completely integrable [ 131. The practical interest in this model lies in the description of the 
motion of charged cosmic particles in the magnetic field of the earth. 

In the case of chaotic scattering (for reviews see [14,15]), scattering functions, for 
example the time delay function or the deflection function, contain singularities on a fractal 
subset of their domain. This behaviour has the following explanation. For positive ranges of 
the energy there also exists a chaotic invariant set (the so-called chaotic saddle) containing 
an infinite number of unstable localized orbits whose invariant manifolds reach out into the 
asymptotic region. Whenever a scattering trajectory starts close to the stable manifold of 
the saddle, it approaches the localized orbits, runs for a while alongside them and, for a 
finite time, traces out complicated motion of the type which chaotic localized orbits perform 
for ever. Thereby, scattering chaos is a version of transient chaos. When the scattering 
trajectory starts exactly on a stable manifold of the saddle, it stays in the saddle for ever 
and is captured. Of course, this can happen only for a subset of measure zero in the set 
of all possible initial scattering asymptotes. For such particular initial conditions, the delay 
time is infinite and the deflection angle is undefined. Therefore, the singularity structure of 
the scattering function presents the fractal structure of the bundle of stable manifolds of the 
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chaotic saddle and, therefore, provides many characteristic numbers of the chaotic saddle 
itself [16]. The appropriate method to obtain such numbers (e.g. entropies, dimensions, 
Lyapunov exponent, escape rate) numerically is the thermodynamic formalism [17,18]. 

Scattering chaos of this type has been found in a large variety of systems, e.g. in 
classical models for molecular reactions (for these processes see the review [ 19]), in model 
computations for satellite encounters [20], for vortex scattering in hydrodynamics 1211, in 
soliton scattering [22], for particle transport in an open hydrodynamical flow 1231 and for 
various models of potential scattering. For a recent overview of this field of activity see the 
feature issue of the journal Chnos on chaotic scattering 1241. 

The first step in the analysis of a chaotic scattering system should consist of finding 
some systematic order in the singularity structure of the scattering functions. In particular, 
a hierarchical order is needed. The main purpose of this paper is to show, with the aid of 
the particular example of scattering off a magnetic dipole, how such an order is obtained 
in a natural way. For comparison, we present three. different scattering functions for this 
model and, in section 4. we demonstrate how one of them, namely, a particular variant of 
the time delay function, orders its singularity structure in a very useful hierarchical way. 
We shall make essential use of some ideas already presented in [7]. Therefore, let us give 
a very short review of the main considerations of this paper: the basic structure of the 
invariant set is represented as a horseshoe construction in an appropriate Poincar.6 map [U]. 
In particular, its skeleton is given by the homoclinic grid of some fixed point. If the system 
has a local potential with a barrier which acts as an outer boundary for the invariant set, 
then the most appropriate fixed point is the one belonging to the unstable periodic orbit 
oscillating over the barrier. Under variation of some system parameters, the tendrils of the 
invariant manifolds and, therefore, the homoclinic grid also change and, in particular, they 
create homoclinic bifurcations whenever some tendrils of the stable and unstable manifolds 
touch each other tangentially. Then, the horseshoe construction is not completely hyperbolic 
and in the invariant set there are also KAM tori at least on a small scale. This prevents the 
construction of a finite exact grammar for a symbolic description. However, in between 
the parameter space, there are also intervals in which homoclinic bifurcations are avoided 
(at least on low levels of the hierarchy), even though the invariant set is not a complete 
horseshoe. In such intervals, a hierarchical order of the homoclinic grid can be described 
with a finite number of rules (at least approximately). This order also applies to the structure 
of the scattering functions. For some more information on the possibility of finite and exact 
grammatical rules and hyperbobcity for incomplete horseshoes see also f26.271. 
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2. Singularity structure in the scattering functions 

Imagine a magnetic dipole of moment p oriented along the z-axis and sitting in the origin 
of position space with coordinates q = ( x ,  y, 2) .  The vector potential of its magnetic field 
is given by 

Here, r is the absolute value of q. The Hamiltonian of a particle with electric charge Q 
moving in this field is given by 

H = @ - Q A ( d / c ) 2 / h  (2) 
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where p is the momentum of the particle, m is its mass and c is the speed of light Because 
of the rotational symmeby of the system about the z-axis, the z component of the angular 
momentum is COnSeNed and we can separate off one degree of freedom. We transform to 
the cylindrical coordinates p .  @, z ,  forget about the @ coordinate, scale out all parameters 
as shown in [ll] and obtain the motion of a particle in the following two-dimensional local 
potential 

For some contour lines of this potential see [12]. The only parameter left in the system is 
the total energy E and, in the following, we will investigate how the invariant set changes 
under variation of E. There is a bifurcation energy Es = 0.081.. . above which the system 
has no localized orbits. Accordingly, for E > E$ all scattering functions are smooth. At 
E$ a chaotic saddle is created. The central bifurcation at Es is a saddle-centred bifurcation 
between a hyperbolic orbit y and an elliptic orbit r, both of which cross the plane z = 0 
once from above and once from below during each revolution. Accordingly, we will call 
these period-one orbits. At some lower energy, the orbit r becomes inverse hyperbolic. 
These two orbits are the backbone of the chaotic saddle. For E > El- = 0.0605.. . no 
further orbits of period one exist. Figure 1 shows the two periodic orbits y and r and a 
typical scattering orbit in the p-z plane for E = 0.074. Some more trajectories for other 
energies are plotted in [12]. The potential (3) has a barrier of height Eb = 1/32 such that 
for E c Eb. the chaotic set lies behind the barrier, is no longer accessible to scattering 
trajectories and the scattering functions become smooth again, i.e. Scattering chaos only 
exists in the energy interval IC = (Eb,  E& 

The structure of the chaotic set in the scattering function depends strongly on the value 
of E. In complete analogy to the system investigated in [7], there exist parameter intervals 

1.50 
. 

0.54 
P 

Flgure 1. A plot of the two orbits of period one shown as full curves and a typical scathing 
Uajectory as a broken curve in the p-z plane. y is the outer and r the inner periodic orbit. Ihe 
value of the energy is E = 0.074. 
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I, in which the structure of the invariant set can be described rather well by finite rules 
and complements in which a symbolic description is extremely complicated. The intervals 
I.  are the ones in which homoclinic tangencies are avoided, at least in low levels of the 
hierarchy. For more explanations see below and [7]. 

There exists an energy interval [El-. El+] = [0.0605,0.0645], which we call r ~ ,  in 
which a completely hyperbolic binary chaotic saddle is realized in a Poincark map of the 
system. Then, a binary symbolic dynamics with trivial grammatical rules applies, i.e. all 
symbol sequences in two-symbol values are realized. To demonstrate our ideas on the 
construction of a useful symbolic description, let us choose an energy value for which the 
rules are not so trivial. We choose E = 0.W4, which lies in the parameter interval I l l2  in 
the terminology of 171. (Y = { means that the binary horseshoe construction has already 
been disentangled halfway. 

This can be explained better in an appropriate P o i n d  section. There are two different 
quite natural choices for a Poincark plane which are both adapted to the symmetry z -+ -z 
and pr -+ -pz of the system, namely the plane z = 0 and the plane pz = 0. In both of 
these planes, we use both orientations of intersection of the plane in order to reduce out 
the symmetry and we monitor at each intersection the values of p and the corresponding 
momentum p p .  Then, the periodic orbit y corresponds to a fixed point xo of the Poincart 
map in the p-pp plane. Figure 2(u) shows the homoclinic tangle created by the invariant 
manifolds of xo in the plane pz = 0 and figure 2(b) is the corresponding picture in the 
plane z = 0. Some tendrils of the stable manifold Ws and of the unstable manifold W" 
are plotted. These two choices of intersection plane have the following advantages and 
disadvantages. In the plane p z  = 0, the fundamental curvilinear =tangle of the horseshoe 
construction (it is drawn as a full curve in the plot and its comers are labelled by a, yz. y ~ ,  
y3) lies symmetrically with respect to the p-axis and its hierarchical construction scheme 
can be grasped easily. In contrast, in the plane z = 0, the fundamental rectangle is distorted 
asymmetrically and the tendril hierarchy level is also shifted. Therefore, we will use the 
plane pr = 0 for high energies. As we will explain later, for lower energies the Poincark 
section in the plane pr = 0 becomes discontinuous. Therefore, for such lower energies it is 
advisable to use the plane z = 0 in spite of its small disadvantages. The tendrils in figure 2 
are approximately half the length they would need to be to build a complete horseshoe 
construction. Therefore, we call this the case for which the disentanglement parameter (Y 

has the value i. For a more precise definition of parameter (Y see [7]. Compare figure 2(u) 
of the present paper with figure 2 in [7]. 

The tip of tendril number n of W, or W, is labelled by r, or tun, respectively, in the 
figures. Points labelled by the same letters in parts (U) and (b )  are related as follows. Take a 
point p in the plane z = 0 shown in figure 2(b). Follow the trajectory in phase space through 
this point until it intersects the plane pz = 0. This point of intersection is also labelled 
by p .  The composition of this canonical map from the plane z = 0 into the plane pr  = 0 
with the corresponding map from the plane p z  = 0 into the plane z = 0 forms just the 
original symmetry-reduced Poincar.6 map in the plane z = 0. By t h i s  transfer of structures 
between the two planes, the hierarchical levels of the structures in the plane z = 0 are the 
levels taken from the plane pz = 0 and transported into the other plane. Correspondingly, 
the hierarchical ordering in the plane z = 0 is not symmetrical with respect to the line 
p p  = 0 in this plane. It is also possible to introduce a symmetrical order of levels in the 
plane z = 0. However, then we can no longer use a fundamental rectangle to perform the 
horseshoe construction. Instead, we must use the area between the local segments of W. 
and W,, which are the direct connections between the points xo and yz, as a fundamental 
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Figure 2 In a P o i n d  section defined by the intersection condition pz = 0 in (a) and z = 0 m 
(b), we use the cwrdinata p and p p .  xg is the fixed pint of the Poincd map conespanding 
to the periodic orbit y .  Pieces of the invariant manifolds of xg are also shown. Tendrils up to 
level 4 are plotted. The tips of the tendrils of level n are labelled as 1, and run for W, and W,. 
respectively. The fundamental mangle of the horseshoe consnution (i.e. the rectangle with 
comers xg, n, y ~ ,  n) is given by the full curves. The energy is E = 0.074. 
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area. Of course, this area is also a completely satisfactory covering of the chaotic saddle of 
the map. For an example of this construction, see section 5. 

Figures 3 and 4 present the time delay function and the deflection function for energy 
E = 0.074. They have been obtained as follows. We fix some value piD sufficiently large 
such that it lies well inside the asymptotic region. Further, we fix p z  = 0, set p p  = -(2E)'Iz 
and scan zh. We follow each scattering trajectory until it reaches the outgoing asymptotic 
region again at some value paul. The total time T(zh) needed by the trajectory is monitored 
as a function of the initial variable zin. Since we are only interested in the time delay that 
the trajectory had in the interaction region and not in the time it needed to enter and leave 
up to the asymptotic initial and final points, we subtract the asymptotic times and compute 
the function 

6' Riickerl and C Jung 

This function is plotted in figure 3. In addition, we monitor the direction of the outgoing 
trajectory represented by its angle relative to the plane z = 0. This deflection angle is 
plotted in figure 4 as a function of zio. We see identical singularity structures in these two 
functions. However, it is nearly impossible to see a clear hierarchical structure. Whereas 
it is rather hopeless to try to get some ordering scheme out of the deflection function, for 
the time delay there is the following recipe [16-181 to enforce some fractal hierarchy by 
cutting the zi.-axis into intervals: on level n choose the threshold Dt = n, find all intervals 
1; such that D f  > n inside and Dt < n outside. In the limit n -+ 03, this provides a fractal 
structure in which the boundaries of the intervals Z; accumulate towards the singularities 
of the scattering functions. This hierarchical construction of a Cantor set along the zi.-axis 
provides all the important characteristic numbers of the saddle, at least as long as it is 
hyperbolic. An inspection of figure 3 shows that this method does not provide any obvious 
and simple scheme. On the other hand, figure 2 shows that the homoclinic intersection 
grid is rather regular and this regularity implies the same type of simplicity in the whole 
saddle and should be transfered into the scattering behaviour. The structure of the bundle 
of stable manifolds going out into the incoming asymptotic region is exactly the structure 
given by the intersection of the stable manifolds with that short segment W,& of the unstable 
manifold of which starts directly from the point ~0 (it is the full curve between the points 
xo and y3 in figure 2(a)). Figure 2 indicates that we have a situation where all the tips of 
the tendrils of W" are located in gaps void of tendrils of W 8  and vice versa. Then, under 
iteration of the map, each tip is mapped out of the area containing homoclinic intersections 
after a finite number of iterations (compare similar considerations in 1261). Therefore, there 
should be appropriate scattering functions which reveal this structure and provide a good 
starting point to construct a symbolic description of the structure. In the next section, we 
show an example of such a function. 

3. Modified delay function 

We saw that the time delay function can be used to construct some hierarchical fractal 
structw. However, the result is not yet satisfactory. So, we try to improve it and construct 
a better-suited function which we shall call the modified delay function. The motivation for 
its construction is provided by the following reasoning. The starting point for any horseshoe 
construction in a map, such as, for example, the Poincad map of the given scattering system, 
is a fundamental area A which is stretched and folded in any application of the map, such 
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Figure 3. T m  delay function for E = 0.M4 as a hunction of L. for fixed incoming "en" 
in the negative p-direction. 

15 0.3240 0.3245 0.32% 0 :  
lmpaaparamner 

55 

Figure 4. Deflection function for E = 0.074. The ontgoinp angle is plotled against z k  for fixed 
ineomiog direction, as in figure 3. 
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that A covers all points which are not mapped to infinity under iterated application of 
the map. The hierarchical structure of the horseshoe is obtained by iteratively cutting out 
subregions of A containing points not leaving A after n iterations. Thereby any generic 
trajectory of the phase space (domain of the map) not belonging to the chaotic saddle itself 
can be assigned, as a label, the number of its iterates lying inside the fundamental area A. 
We apply this idea of labelling scattering trajectories to our system. First, we choose an 
appropriate plane for a Poincad map. In our case, it is the plane already introduced above, 
i.e. the intersection condition is pz = 0. The homoclinic grid of figure 2(a) shows us what 
a good choice for the fundamental area the region A enclosed by the full curves is. It is the 
curvilinear rectangle with the comers XO. yz, y1 and ys where the boundaries are formed by 
segments of the invariant manifolds of the fixed point XO.  

The potential equation (3) has a saddle point at p = 2 z = 0 and for larger values of 
p outside of the saddle it decreases monotonically; there are no localized orbits beyond the 
saddle point. Trajectories crossing this potential saddle from the inside Io the outside will 
never return. The orbit y oscillating on this saddle of the potential divides the position space 
into an inside and an outside region. Complicated motion only occurs in the inside region. 
In phase space, the invariant manifolds of y divide regions of complicated behaviour from 
regions of simple behaviour. The manifolds of xo in the Poincar6 plane enclose the region 
containing periodic points and localized trajectories. 

Now, the prescription for the modified delay function is as follows. Take some one- 
dimensional line in the set of initial asymptotes, e.g. fix the values of E and p z  and choose 
a large value of p which is well into the asymptotic region and scan the initial value of 
z .  Run scattering hajectories, watch for their intersections with the Poincar.6 plane and 
count the number M of intersections inside A as a function of some curve parameter s of 
the line of initial asymptotes. The resulting function M(s) is the modified delay function. 
Figure 5 shows M(zi,,) for the magnetic dipole where all parameters as well as its domain 
are the same as they are for the other two scattering functions shown in figures 3 and 4. 
Figure 6 gives a magnification of figure 5 in order to show the regular structure contained 

B Rucked and C Jung 
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Figure 5. Modified delay function for h e  SBM parameters as those used for figures 3 and 4. 
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Figure 6. MagnifiMtion of a part of figure 5. 

in this function. Of course, the discontinuities of this new function exactly coincide with 
the discontinuities of the other two scattering functions. 

The values of the function M are integers and, therefore, provide a natural hierarchical 
Cantor-set construction along the zin-axis by cutting out in step n such intervals in which 
M < R. In step n, the intervals J,!' in which M 3r n remain. 

Let N(n)  he the number of intervals J;" on level n. The ratio 

B = l i  N(n  + l ) / N ( n )  
n+m (5 )  

is the branching ratio of the singularity structure and KO = In@) is its topological entropy. 

4. Symbolics of the branching tree 

The intervals JY create a branching tree as follows. On level n, each interval J; is 
represented by one entry. This is connected with the entry of the interval Jf"'' of level 
n - 1 if c JF-'). The resulting tree is presented up to level 5 in f i p  7. 

This hierarchy of partly nested intervals coincides with the hierarchy we obtain from 
the homoclinic tangle. It is sufficient to consider the homoclinic intersections along the 
local segment W& of W.; it is the arc connecting xg with y3. AU other homoclinic points 
are some iterates of these and identified by JP. The first-level tendril of Ws (its tip is 
labelled by &I i n  figure 2) cuts out the interval &, $2) and leaves two smaller intervals J: 
(the segment of W, from xo to SI) and .I: (the segment of W, from s2 to n). In the next 
step, take the second-level tendril of Ws which is the pre-image of the first-level tendril 
and which cuts out parts of the first-level intervals J i .  The remaining intervals are from 
level 2. By continuation of this procedure, we obtain a nested-interval construction which 
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Figure 7. Branching bee for the disentangle- 
ment parameter value (I = $. Each enby is 
labelled by the last digit of its symbalic ccde in 
Uvee symbol values. 

0 

1 

0 

is identical to the one created by the modified delay function and we also obtain exactly 
the same branching tree. 

Next we need a symbolic dynamics describing this tree. The simplest and most natural 
dynamics we found is shown in figure 7, where the last digit of the label of each entry is 
given. The complete label of an entry of level n is a string of length n. It has the following 
very simple grammatical rules: 

(i) on a string ending on 0. +1 or 1+, it is allowed to append either 0 or 1; and 
(ii) on a smng ending on 01 or on 11, it is only allowed to append +. 
In order to obtain the lowest levels of the tree, we can imagine that the entry of level 0 

has a 0 as its symbolic ccde. We see that whenever some interval is not cut into two pieces 
in a transition from one level to the next, the symbol + is appended in order to obtain the 
label of the new interval of the higher level. When an interval is cut into two pieces, the 
symbols 0 and 1 are appended to the label of the old interval in order to obtain the two 
labels of the new intervals. The rule for the distribution of the 0 and 1 is as follows. When 
the label of the old interval contains an even number of l's, the right-hand new interval 
gets the 0 and the left-hand new interval the 1. When the label of the old interval contains 
an odd number of l's, it is the other way around. 

At first it may seem strange to use three different symbol values (namely 0, 1, +) for a 
horseshoe which contains only two points of period one and which is an incomplete version 
of a binary horseshoe and, of course, there are also possibilities to construct symbolic 
dynamics with an alphabet containing two symbols only. However, these possibilities have 
important disadvantages. Any effort to label the branching tree as it stands in figure 7 
with two symbol values leads to infinite rules. In order to enforce a description with two 
symbol values and finite rules, it is necessary to split all such entries which are labelled 
by + in figure 7 into two parts and to treat these two parts as two disjoint intervals in the 
two-symbol description. This procedure is acceptable from the point of view of constructing 
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some partition of the Poincar6 plane which generates the symbolic dynamics. In the case 
of the three-symbol description, the partition is made by segments of W, and W, only, but 
this is not true for the use of the two-symbol description. The artificial division is unnatural 
from the point of view of scattering processes, where the partitions should be given by 
the scatteringprocess continuity intervals and their scattering functions. Nevertheless, let 
us give here for comparison a possible symbolic description in two-symbol values. The 
branching tree is given in figure 8. Comparison with figure 7 shows that now all the entries 
having the last symbol + in figure 7 are split into two entries in figure 8. To make this 
evident, these entries are connected in figure 8 by a broken vertical line. The last digit 
of the labels in two-symbol values is indicated in the figure. The complete label of each 
entry of level n is again a string of length n. The labels in figure 8 obey the following 
grammatical rules: 

(i) on a string ending on OOO, 001, 100, 101 or 110, it is allowed to append either 0 
or 1; 

(ii) on a string ending on 010 or 01 I, it is only allowed to append 0. 
The topological entropy coming from these rules is exactly the same as the one 

coming from the other rules in three-symbol values given above. Its numerical value is 
KO = 1.7.. . . These rules are valid in the interval Z I ~ Z  = [Et,*-, Elp+l = 10.071 1.0.07441. 

I 0 

T i  

Figure S. Bnnchiag me for the disentangle- 
ment parametw vdue U = 4. compared to 
h e  tree of figure 7 such entries, which have 
the last-symbol value + m figure I, have been 
split artificially into two entries. Each entry is 
labelled by the last digit of its symbolic d e  in 
WO-symbol values. 

In these rules, the symbol string containing 0’s only is allowed. It corresponds to the 
hyperbolic orbit y and its Occurrence shows that y is accessible for scattering trajectories. 
The orbit r corresponds to the symbol string containing 1’s only. This string is forbidden 
because for E E I,,z the orbit y is screened behind KAM lines and is not accessible to 
scattering trajectories. 



B Rtickerl and C Jung 

- 
1 

1 
1.5 2.5 

P 

1.2 1,4 1.8 1.0 
P 

Figurr 9. Homoclioic mgle of the fixed point xg in the Poioar6 plane z = 0 for E = 0.057. 
pm (a) gives the tendrils up IO level 1 in a rather large frame in order to demonstrate the way 
the tendril winds back Pad (b) shows tendrils up to level 2 in a smaller frdme containing the 
fundamental redangle. The lundamental rectangle (the one with the comers X Q ,  y2. YI. y5) i s  
marlied by full curves. 
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5. Different parameter intervals 

So far we have considered one particular value of the parameter E. In the energy interval 
[ E l + ,  E, ] ,  all the parameter intervals exist which have also been investigated and explained 
in [7]. Interestingly, in the magnetic dipole there exist cases not present in the system 
of 171. In the present system, the parameter interval I ] ,  in which a binary horseshoe is 
complete, has a lower end at an energy El- = 0.0605.. . and for energies below this 
the horseshoe has more parts than in the complete bininy case. This is caused by the 
following effect. Invariant-manifold tendril tips bend back towards the area A and pierce 
the other manifolds again. This is connected with the creation of further periodic points by 
saddlecentre bifurcations. See also figure 2 in [12]. 

In figure 9(u), we p e n t  the homoclinic tangle of the fixed point xo for the energy 
value E = 0.057, which is a good example of where the topological entropy is larger 
than ln(2). Here, the Poincare plane is z = 0. In this Iarge frame, we clearly see how 
the manifolds spiral back. Without these spiral effects, we would have a complete binary 
horseshoe construction. Figure 9(b) gives a magnification of the interior part showing in 
better resolution the homoclinic intersection points. All tendrils up to hierarchical level one 
are included in ( U )  and tendrils up to level 2 are included in (b). m e  fundamental rectangle 
of the horseshoe construction is again marked by full curves. Please note that it is not the 
continuation of the "@e marked in figure 2. Now that the rectangle with the comers XO,  

yz, y ~ .  y3 does not cover the complete area containing homoclinic intersection points, the 
winding back of the tendrils creates additional intersections outside. However, the rectangle 
with the comers XO, yz, y4, ys (i.e. the one marked in the figure) does the covering. As 
explained above in the plane z = 0, we must make a choice which is not symmetric to the 
p-axis. An altemative satisfactory choice for A, which is symmetric but not a curvilinear 

0 5  1.5 

Figure 10. A segment of a mjectory belonging to Wy of xg plotted in the p-z plane. 
Intersenions with the plane z = 0 are mark4 by crosses. Intersections with the plane pz = 0 
are marked by circles. Note that the c m e s  and circles do not follow each other altedvely.  
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Fwrc 11. Pati (a) gives the schematic plc4 of a complete horseshoe with four fixed points. 
Pad (b) gives the schematic plot of the particular incomplete horseshoe which c o m p n d s  to 
Ihe numerically comtn~cted homaclinic grid of figure 9. Tendrils up to level 2 (in a 6y"etrieal 
ordering scheme) are plotted. For bene1 distinction, various segments are plotted in different 
line styles. Note that the mcturc in (b) is topologically the same as in Bgurc 9. 



Magnetic dipole 6755 

rectangle, is the area enclosed by the local segments of W. and W, which connect xg with 
y* directly. 

Now let us explain why we need the plane z = 0 for E < El- and why we can 
no longer use the plane p z  = 0 in the same way as before. Figure 10 shows a segment 
of a trajectory belonging to W" of xg in the p-z plane. Its intersections with the plane 
z = 0 are marked by crosses and its intersections with the plane p z  = 0 are marked by 
circles. Strikingly, between the second and thiid cross there are three different circles. This 
means that the Poincar6 map in the plane pi  = 0 has discontinuity lines along which the 
continuation of an image line is provided by the thii application of the map. We want to 
avoid this type of complication, which occurs in the plane pz = 0, as soon as E < E- ,  
and, therefore, use the plane z = 0. 

The structure presented in figure 9 is an incomplete horseshoe of four fixed points. 
In the schematic figure Il(n), we show a corresponding complete horseshoe of four fixed 
points and in figure 1 I@), we show the schematic situation corresponding to the numerically 
constructed figure 9 for the dipole. In the schematic figure 11, tendrils up to level 2 are 
included. For easier comparison between (a) and (b), various segments of the manifolds are 
plotted by different line styles such that equal line styles belong to corresponding segments. 
Full curves are the segments up to level 1. The level-2 segments are plotted as various 
broken curves. Along the local piece of W". the intervals cut out by the tendrils of Ws 
are labelled by the symbols 0, 1,2,3, f. Note that, compared to the complete situation, 
in the incomplete case of part ( b )  some intervals belonging to the symbol values 0 and 1 
on the second level are fused into a single interval. To such an interval we will assign 
the symbol +, in complete analogy to the case of the interval I, /? shown above. For 
this parameter value, we do not have to deal with intervals resulting from the fusion of 
other combinations of basic symbol values. Therefore, it is sufficient to introduce the single 
additional symbol f. For other parameter values it might be appropriate to introduce further 
additional symbols denoting the fusion of other combinations of basic symbols. 

The symbolic code for the parameter case E = 0.057 is again found most easily in the 
branching tree, which is given in figure 12 up to level 4. Each entry is labelled by the last 
digit of its symbolic code. On level 1, the order of the four symbol values is 1,3,2,0. On 
higher levels, we find the same order if the total number of 1's and 3's taken together is 
even and the reversed order if this number is odd. This rule also applies to the order of 1 
and 0 if the symbols 2 and 3 are missing at some node. The grammatical rules are read off 

(i) on a symbol string ending on 0 or on t 1, it is allowed to append 0 or 1 or 2 or 3; 
(U) on a symbol suing ending on 2 or on 3, it is only allowed to append +; 
(iii) on a symbol string ending on 11, 01 or +, it is allowed to append 0 or 1. 
The non-trivial factor in the characteristic polynomial of the corresponding transfer 

as: 

matrix is 

Its largest root is hmu = 2.4019. . . . This value coincides with the average branching ratio 
of the intervals in the modified &lay function. 

Note that the fixed points belonging to the symbol values 2 and 3 have already been 
lost for the parameter value shown in figures 1 I@) and 9. Correspondingly, infinite strings 
of 2's and 3's only are not allowed. Now the orbit r is unstable and it is accessible to 
scattering trajectories, therefore infinite strings of 1's are now allowed in contrast to the 
rules for E E 11,~ given in section 4. In analogy to the case considered in sections 3 and 4, 
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Figure 12. Branching tree "responding to figures 9 
and ll(b). Each entry is labelled by Ihe last digit of ifs 3 

2 
0 symbolic code. 

it is again possible to avoid the introduction of the symbol + at the price of cutting some 
enhies of the branching tree into two pieces. 

For other parameter intervals in which homoclinic bifurcations are avoided (at least in 
low levels of the hierarchy), we can construct branching trees and symbolic codes along 
the same basic pattern (at least approximately). 

6. Discussion 

We have applied some ideas on the symbolic ordering of scattering functions on the motion 
of a charged particle in the field of a magnetic dipole. For some parameter regions, we 
have presented a simple symbolic dynamics. The intervals in which such a construction is 
possible are the ones in which homoclinic bifurcations are avoided. In ow construction of 
the hierarchical order, two points are remarkable in our opinion. 

(i) We look for the levels of hierarchy in an appropriate Poincar.4 map. The level 
of hierarchy of any trajectory is the number of its points which are located inside the 
fundamental area A of the horseshoe construction. This order does not coincide, in general, 
with the ordering provided by the true time delay function. Our modified delay function via 
the Poincart map has the disadvantage that it cannot he constructed by the sole knowledge 
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of asymptotic scattering data, in contrast to the true time delay function. On the other hand, 
the true time delay function has the big disadvantage that it does not reveal the simple 
hierarchical order contained in the horseshoe construction. Note that, in general, the return 
times in a Poincark section can be strongly different for different points. 

(U) It is useful (although not necessary) to have a number of symbol values which are 
larger than the number of fixed points of the Poincark map in order to use the invariant 
manifolds of xo only for the partition. Thus, we can assign exactly one symbol sequence of 
length n to each interval J;. It is not necessary to introduce further unnatural divisions which 
are necessary if we refuse to introduce additional symbols. The new symbol values (in the 
cases presented above, it is the +) correspond to blocks in which gaps of the corresponding 
complete horseshoe have disappeared and thereby distinct blocks of the complete case have 
been fused into a single block. For other parameter values or for other systems, this principle 
may require several different new symbol values for various different combinations of basic 
symbols. 

In complete analogy to the extensive discussion given in [7], our symbolic description 
will break down for high levels in the hierarchy if the phase space of the system contains KAM 
lines, cantori or other subsets of marginal stability. In their vicinity, a symbolic dynamics 
with finite rules is no longer able to separate all the different trajectories. This breakdown 
should occur at such levels of the hierarchy where, in previous treatments of systems with 
incomplete horseshoes, a crossover from hyperbolic to non-hyperbolic behaviour has been 
observed [2&32]. 

Knowledge of a symbolic dynamics can also be useful in organizing the summation in a 
semiclassical treatment either by summing the amplitude directly [33] or by using periodic- 
orbit methods [34], where the symbolic dynamics tells us which periodic orbits are relevant 
for the scattering behaviour. 
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